Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Microbiol Spectr ; 11(1): e0330122, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213892

ABSTRACT

SARS-CoV-2 is a zoonotic virus first identified in 2019, and has quickly spread worldwide. The virus is primarily transmitted through respiratory droplets from infected persons; however, the virus-laden excretions can contaminate surfaces which can serve as a potential source of infection. Since the beginning of the pandemic, SARS-CoV-2 has continued to evolve and accumulate mutations throughout its genome leading to the emergence of variants of concern (VOCs) which exhibit increased fitness, transmissibility, and/or virulence. However, the stability of SARS-CoV-2 VOCs in biological fluids has not been thoroughly investigated. The aim of this study was to determine and compare the stability of different SARS-CoV-2 strains in human biological fluids. Here, we demonstrate that the ancestral strain of the Wuhan-like lineage A was more stable than the Alpha VOC B.1.1.7, and the Beta VOC B.1.351 strains in human liquid nasal mucus and sputum. In contrast, there was no difference in stability among the three strains in dried biological fluids. Furthermore, we also show that the Omicron VOC B.1.1.529 strain was less stable than the ancestral Wuhan-like strain in liquid nasal mucus. These studies provide insight into the effect of the molecular evolution of SARS-CoV-2 on environmental virus stability, which is important information for the development of countermeasures against SARS-CoV-2. IMPORTANCE Genetic evolution of SARS-CoV-2 leads to the continuous emergence of novel virus variants, posing a significant concern to global public health. Five of these variants have been classified to date into variants of concern (VOCs); Alpha, Beta, Gamma, Delta, and Omicron. Previous studies investigated the stability of SARS-CoV-2 under various conditions, but there is a gap of knowledge on the survival of SARS-CoV-2 VOCs in human biological fluids which are clinically relevant. Here, we present evidence that Alpha, Beta, and Omicron VOCs were less stable than the ancestral Wuhan-like strain in human biological fluids. Our findings highlight the potential risk of contaminated human biological fluids in SARS-CoV-2 transmission and contribute to the development of countermeasures against SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Evolution, Molecular , Mutation
2.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921607

ABSTRACT

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Microbiol Spectr ; 10(3): e0178921, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1874518

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 spike (S) protein have arisen, culminating in the spread of several variants of concern (VOCs) with various degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we used pseudoviruses that express specific SARS-CoV-2 S protein substitutions and cell lines that express angiotensin-converting enzyme 2 (ACE2) from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the ancestral prototype S at levels comparable to human ACE2. Most single S substitutions did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency. Conversely, combinatorial VOC substitutions in the S protein were associated with increased entry of pseudoviruses. Neutralizing titers in sera from various animal species were significantly reduced against pseudoviruses expressing the S proteins of Beta, Delta, or Omicron VOCs compared to the parental S protein. Especially, substitutions in the S protein of the Omicron variant significantly reduced the neutralizing titers of the sera. This study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication, and antibody-mediated viral neutralization. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to have devastating impacts on global health and socioeconomics. The recent emergence of SARS-CoV-2 variants of concern, which contain mutations that can affect the virulence, transmission, and effectiveness of licensed vaccines and therapeutic antibodies, are currently becoming the common strains circulating in humans worldwide. In addition, SARS-CoV-2 has been shown to infect a wide variety of animal species, which could result in additional mutations of the SARS-CoV-2 virus. In this study, we investigate the effect of mutations present in SARS-CoV-2 variants of concern and determine the effects of these mutations on cell entry, virulence, and antibody neutralization activity in humans and a variety of animals that might be susceptible to SARS-CoV-2 infection. This information is essential to understand the effects of important SARS-CoV-2 mutations and to inform public policy to create better strategies to control the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization
4.
Cell Host Microbe ; 30(3): 373-387.e7, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1767977

ABSTRACT

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Emerg Microbes Infect ; 11(1): 662-675, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1665836

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 by experimental and/or natural infections. Sheep are a commonly farmed domestic ruminant that have not been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cells and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived kidney cells support SARS-CoV-2 replication. Furthermore, the experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs at 1 and 3-days post challenge (DPC); viral RNA was also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naïve sheep was not highly efficient; however, viral RNA was detected in respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used a challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern, to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection and that the alpha variant outcompeted the lineage A strain.


Subject(s)
COVID-19 , Coinfection , Sheep/virology , Animals , COVID-19/veterinary , Coinfection/veterinary , SARS-CoV-2
6.
Emerg Microbes Infect ; 11(1): 95-112, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541489

ABSTRACT

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , COVID-19/veterinary , Deer , Pregnancy Complications, Infectious , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Organ Specificity , Pregnancy , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Virus Shedding
7.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1463828

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , COVID-19/veterinary , SARS-CoV-2/genetics , Animals , COVID-19/pathology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host Specificity/genetics , Host Specificity/physiology , Zoonoses
8.
Parasit Vectors ; 14(1): 214, 2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1195926

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged coronavirus that is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 in humans is characterized by a wide range of symptoms that range from asymptomatic to mild or severe illness including death. SARS-CoV-2 is highly contagious and is transmitted via the oral-nasal route through droplets and aerosols, or through contact with contaminated fomites. House flies are known to transmit bacterial, parasitic and viral diseases to humans and animals as mechanical vectors. Previous studies have shown that house flies can mechanically transmit coronaviruses, such as turkey coronavirus; however, the house fly's role in SARS-CoV-2 transmission has not yet been explored. The goal of this work was to investigate the potential of house flies to mechanically transmit SARS-CoV-2. For this purpose, it was determined whether house flies can acquire SARS-CoV-2, harbor live virus and mechanically transmit the virus to naive substrates and surfaces. METHODS: Two independent studies were performed to address the study objectives. In the first study, house flies were tested for infectivity after exposure to SARS-CoV-2-spiked medium or milk. In the second study, environmental samples were tested for infectivity after contact with SARS-CoV-2-exposed flies. During both studies, samples were collected at various time points post-exposure and evaluated by SARS-CoV-2-specific RT-qPCR and virus isolation. RESULTS: All flies exposed to SARS-CoV-2-spiked media or milk substrates were positive for viral RNA at 4 h and 24 h post-exposure. Infectious virus was isolated only from the flies exposed to virus-spiked milk but not from those exposed to virus-spiked medium. Moreover, viral RNA was detected in environmental samples after contact with SARS-CoV-2 exposed flies, although no infectious virus was recovered from these samples. CONCLUSIONS: Under laboratory conditions, house flies acquired and harbored infectious SARS-CoV-2 for up to 24 h post-exposure. In addition, house flies were able to mechanically transmit SARS-CoV-2 genomic RNA to the surrounding environment up to 24 h post-exposure. Further studies are warranted to determine if house fly transmission occurs naturally and the potential public health implications of such events.


Subject(s)
COVID-19/transmission , Houseflies/virology , Insect Vectors/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Animals , Chlorocebus aethiops , Female , Vero Cells
9.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1157174

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Subject(s)
COVID-19 Drug Treatment , DNA Topoisomerases, Type I/metabolism , SARS-CoV-2/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , COVID-19/enzymology , COVID-19/pathology , Chlorocebus aethiops , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Inflammation/virology , Mesocricetus , Mice , Mice, Transgenic , THP-1 Cells , Vero Cells
10.
Emerg Microbes Infect ; 10(1): 638-650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1127285

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/transmission , Disease Susceptibility/immunology , Reinfection/veterinary , Virus Shedding , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/veterinary , Cats , Cell Line , Chlorocebus aethiops , RNA, Viral/isolation & purification , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/immunology , Vero Cells , Viral Load
11.
Emerg Microbes Infect ; 9(1): 2322-2332, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-838603

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, disease and transmission in domestic cats. Cats were challenged with SARS-CoV-2 via intranasal and oral routes. One day post challenge (DPC), two sentinel cats were introduced. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding. Postmortem examinations were performed at 4, 7 and 21 DPC. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats. Serology showed that both, principals and sentinels, developed antibodies to SARS-CoV-2. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels. The results of this study are critical for understanding the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment.


Subject(s)
Betacoronavirus/isolation & purification , Cat Diseases/transmission , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Disease Susceptibility , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bronchoalveolar Lavage Fluid/chemistry , COVID-19 , Cat Diseases/pathology , Cat Diseases/virology , Cats , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Male , Pneumonia, Viral/pathology , RNA, Viral/analysis , RNA, Viral/isolation & purification , SARS-CoV-2 , Vero Cells , Virus Replication
12.
Emerg Microbes Infect ; 9(1): 2278-2288, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-811383

ABSTRACT

The emergence of SARS-CoV-2 has resulted in an ongoing global pandemic with significant morbidity, mortality, and economic consequences. The susceptibility of different animal species to SARS-CoV-2 is of concern due to the potential for interspecies transmission, and the requirement for pre-clinical animal models to develop effective countermeasures. In the current study, we determined the ability of SARS-CoV-2 to (i) replicate in porcine cell lines, (ii) establish infection in domestic pigs via experimental oral/intranasal/intratracheal inoculation, and (iii) transmit to co-housed naïve sentinel pigs. SARS-CoV-2 was able to replicate in two different porcine cell lines with cytopathic effects. Interestingly, none of the SARS-CoV-2-inoculated pigs showed evidence of clinical signs, viral replication or SARS-CoV-2-specific antibody responses. Moreover, none of the sentinel pigs displayed markers of SARS-CoV-2 infection. These data indicate that although different porcine cell lines are permissive to SARS-CoV-2, five-week old pigs are not susceptible to infection via oral/intranasal/intratracheal challenge. Pigs are therefore unlikely to be significant carriers of SARS-CoV-2 and are not a suitable pre-clinical animal model to study SARS-CoV-2 pathogenesis or efficacy of respective vaccines or therapeutics.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/veterinary , Pandemics/veterinary , Pneumonia, Viral/veterinary , Swine Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Disease Models, Animal , Disease Reservoirs , Disease Susceptibility , Female , Male , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction/veterinary , SARS-CoV-2 , Swine , Swine Diseases/immunology , Swine Diseases/pathology , Swine Diseases/transmission , Virus Cultivation , Virus Replication , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL